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lar gravimetric survey, synthesized within the Kalman and Wiener approaches. Their advantages and disadvantages in solving 
the problems of filtering and smoothing are analyzed. The authors present and compare the results obtained with various recur-
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suggesting, among other things, the identification of signal and noise models, are discussed. 

 
Keywords: gravimetric survey, Wiener filter, Kalman filter, filtering, smoothing, gravity anomaly, comparison, accuracy. 
 

1. INTRODUCTION  

It is a common knowledge that one of the chal-
lenges during a gravimetric survey on a moving vehi-
cle is the need to separate the inertial and gravitational 
components of the specific force measured by the 
gravimeter [1–7]. Currently, it is common practice to 
distinguish between the problems of vector gravime-
try where the full vector of gravity disturbance (GD) 
is determined as the difference between the gravity 
vector and the normal gravity vector at the measure-
ment point, and the problems of scalar gravimetry 
which determines the gravity anomaly (GA) depend-
ing on the value of the GD vector along the true verti-
cal [6–9]. Separation of inertial and gravitational 
components during a scalar gravimetric survey, as a 
matter of fact, consists in estimating (isolating) the 
useful signal of the GA against the background of in-
ertial noise and measurement errors. A strict mathe-
matical statement of this problem for the scalar grav-
imetric survey on a moving vehicle can be formulated 
on the assumption that all the components of the sig-
nal measured by the gravimeter, including the GA, 
vehicle’s inertial acceleration, and measurement er-
rors, are random processes. A traditional solution to 
the problem of the useful signal estimation is aimed at 
the estimation error variance minimization, and the 
estimates obtained in this solution are called optimal 
in the root-mean-square (RMS) sense. This problem 
is solved using two approaches. One of them assumes 

that the random processes are stationary, and they are 
described with spectral densities or correlation func-
tions [10–14]. In the other approach, non-stationary 
processes are generally described in the time domain, 
using the forming filters represented as differential 
equations [14–19].  

In the first approach, the most widespread solution 
of the estimation problem is found for stationary pro-
cesses in steady-state mode. This approach was used 
by N. Wiener [10] and is often called the Wiener, or 
frequency-based, approach. As a result, stationary fil-
ters are synthesized, which are optimal for the steady-
state mode (with infinite time). These filters ensure 
the calculation of optimal estimates and are specified 
by transfer functions (TF), frequency response or 
weight functions [10–14]. They are widely used in 
solving various applied problems, and it is these fil-
ters that have been called the Wiener filters (WF) in 
the field of engineering. This term will be further used 
in this sense in this paper. 

In the second method called the Kalman approach, 
the synthesized filters provide optimal estimates 
which minimize the variance of their errors both in 
the steady-state mode and during the transient process 
within a limited time interval. Therefore, in contrast to 
the first approach, the resulting filters are nonstation-
ary even if the processes themselves are stationary. 
Furthermore, these filters can also be used in solving 
the estimation problems for nonstationary processes 
with finite time, but in this case there will be some 
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limitations due to the Markovian type of the processes 
being estimated. These filters known as the Kalman 
filters (KF) or the Kalman-Bucy filters are set in the 
time domain, using differential or difference equa-
tions [14–22]. In this context we will use the term 
Kalman filter hereinafter. It would be fair to say that 
Kalman-Stratanovich is a more correct term for the 
Kalman approach and the Kalman filter, since the al-
gorithm described in the work by Kalman and Bucy 
was published by R.L. Stratanovich [23, 24] before 
the work [15] publication. However, in view of the 
existing tradition, we will further call them the Kal-
man approach and the Kalman filter. 

Note that when estimating the signals within the 
stochastic approach, filtering and smoothing tasks are 
usually considered separately. In the filtering prob-
lem, the estimate is found in real time, using only the 
measurements that are available at the moment. In the 
smoothing problem, all available measurements are 
involved, and this estimate is found in the post-
processing mode. The filters intended for solving the 
problems of smoothing are called the smoothers [25–
28]. Since there is no requirement for obtaining the 
estimates at the current time point during a gravimet-
ric survey on a tack, the processing algorithms can be 
formed using all accumulated measurements, so the 
smoothers can be applied successfully, and this is 
what actively implemented in practice.  

It is important to emphasize that the optimality 
should be correlated with the models of processes de-
scribing the GA, inertial accelerations and the errors 
of their measurements, for which these filters have 
been synthesized. Obviously, the Kalman filter in 
steady-state mode and the Wiener filter should coin-
cide for the same models, because they are used for 
minimizing the same criterion. The differences consist 
only in the form of representation: differential equa-
tions for the KF, or TF, weight function or frequency 
response for the WF.  

It should be noted that modern gravimetric surveys 
can be carried out from both aircraft (airborne gra-
vimetry) and sea vessels (marine gravimetry) [6, 7, 
20, 29–40]. 

Marine gravimetric surveys [6, 29–33, 41–49] 
have a much longer history than the surveys from air-
craft [7, 20, 34–40, 50]. When the marine gravimetric 
surveys were already in active progress, the Kalman 
filtering methods were just at the conception stage, 
and the computing capabilities for their implementa-
tion were limited. It is these circumstances that ex-
plain the fact that the Wiener approach and corre-

sponding stationary filters have become most popular 
in constructing the algorithms for marine survey data 
processing in practice [6, 29–33, 41–45].  

By the time it was necessary to implement the 
methods for processing the airborne gravimetric sur-
vey data, the Kalman filtering algorithms and compu-
ting tools had developed significantly. In addition, the 
solution of filtering problem itself became noticeably 
more complicated and required the use of external 
meters to effectively compensate for inertial interfer-
ence, since their frequency spectrum was close to that 
of the GA due to the high speed of aircraft. These cir-
cumstances were good prerequisites for active appli-
cation of the Kalman filtering algorithms in airborne 
gravimetry, which has been actually implemented in 
practice [20, 35–40]. 

Based on the above, it is essential to compare the 
advantages and disadvantages of the Wiener and 
Kalman filtering methods as applied to marine gravi-
metric surveys. 

The purpose of this work is to discuss the interrela-
tions, differences and features of algorithms for pro-
cessing the marine scalar gravimetric survey data, 
synthesized within the framework of Kalman and 
Wiener approaches, and to analyze their advantages 
and disadvantages. 

It should be noted that the question of correlation 
of filtering algorithms synthesized within the two ap-
proaches and used, among other things, for solving a 
wide range of problems of navigation information 
processing, was previously discussed in the literature 
[14, 19, 21, 51–53]. The authors believe that the pro-
posed work is of interest in this sense, too, since it 
concerns the correlation of algorithms as applied to 
the problem of scalar gravimetric survey data pro-
cessing. The subject under study has already been 
touched upon in [54–56], and the proposed work de-
velops this issue. 

We also draw attention to the fact that in this paper 
the problem of the GA estimation using measure-
ments accumulated on the tack is solved. A more 
general task is to determine the GA based on the re-
sults of 2D (areal) survey for mapping purposes [6, 
57, 58], in particular, by estimating the spatial field 
represented by orthogonal expansion with unknown 
coefficients [6, 57]. The specific features of this prob-
lem are beyond the scope of this work and are worth 
discussing in a separate study. 

The paper is structured as follows. After the intro-
duction, the first section describes the models of GA 
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and vertical motion, used in the work, and provides a 
related mathematical model of measurements with a 
damped gravimeter. In the second section, based on 
these models, the algorithms for the GA filtering and 
smoothing are formulated and described, first in the 
time domain from the standpoint of the Kalman 
(time-based) approach without simplifications, and 
then from the standpoint of the Wiener (frequency-
based) approach, using the method of local approxi-
mations (MLA). In the third section, the TF, weight 
functions and amplitude-frequency response charac-
teristics (frequency response hereinafter) are con-
structed and compared for the stationary filters corre-
sponding to the KF in steady-state mode, the WF, and 
a stationary filter often used in practice. Characteris-
tics of filters, such as cutoff frequency, bandwidth, 
and spatial resolution, as well as the specifics of their 
definition with regard to the KF are also discussed in 
this section. In the fourth section, the results of the 
GA estimation using the described algorithms, mod-
eled and actual data are presented and compared. The 
main results are summarized in the conclusions. 

2. MODELS OF USEFUL SIGNAL, 
INTERFERENCE AND GRAVIMETRIC 

MEASUREMENTS 

As was mentioned in the introduction, the task 
under consideration consists in isolating the GA 
against the background of inertial accelerations of a 
moving object from which the survey is being car-
ried out. Assuming that the gravimeter measure-
ments are the sum of uncorrelated random process-
es describing the GA useful signal ga and the inter-
ference (inertial vertical accelerations) h, we pre-
sent them first in the form [1–7]: 

*
ay g h   .   (1) 

Regardless of the approach used, in order to build 
optimal filters, it is necessary to set the stochastic 
models of the useful signal and interference. In this 
case, we will use the models in the state space for the 
Kalman formulation, and the models in the form of 
correlation functions or spectral densities for the Wie-
ner formulation. Now we will describe the models of 
GA and vertical motion of an object, used in this 
work, and touch on the features of obtaining the 
measurements in the form of (1) according to the data 
of a damped gravimeter. 

 

2.1 GA Model 

To describe the GA, we will use the Jordan model. 
In the state space, this model can be represented as 
follows [59]: 
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where / 2σ ;dga gaV 
 
V is the motion speed; σga is 

the GA standard deviation; σdga  is the standard devia-
tion of the GA derivative with respect to the trajectory 
length; wga is generating white noise with intensity 

2310 ga  , ( 5 1) / 5   . The GA spectral density 

corresponding to this model is defined by the follow-
ing formula: 
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2.2. Vehicle’s Vertical Motion Model 

It is advisable to describe the vertical accelerations 
of a vehicle in the state space in accordance with other 
parameters of its vertical motion, namely, its vertical 
displacements and velocities. To describe the vertical 
accelerations, velocities, and displacements of an ob-
ject, we will use the model from [60]: 
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where 4x h   is the vehicle’s vertical displacement 
above the reference ellipsoid with the standard devia-

tion equal to σΔh; 5x h  , 6x h  are the vertical veloc-
ity and acceleration. The coefficients included in (4) 

are defined as  2 2
3 ,a    2 2

2 2 ,a      

1 2 ,a      where 2 / ,T    T is the dominating pe-
riod of vertical accelerations; µ is the coefficient of 
vertical accelerations non-uniformity;  is the coeffi-
cient set for the model compliance with the selected 
characteristics of the sea waves. The generating white 
noise intensity wh is set by the value of 

 1
2

3 2 3 12 / .ha a a a a   Standard deviations of vertical 

displacements σΔh and 
h

   are related as 

2 3 1( ) /hh
a a a   . To implement the Wiener ap-

proach, it is sufficient to know the spectral density of 
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vertical accelerations. It can be shown that the spectral 
density of vertical accelerations, corresponding to this 
model is defined as follows: 

 
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2.3 Model of Measurements with Damped Gravimeter 

The representation of measurements in the form of 
(1) is some approximation. When taking measure-
ments, it is necessary to allow for the values of nor-
mal gravity and its variation along the motion trajec-
tory, the accelerations caused by the Eotvos and Har-
rison effects, the orbital effect, etc. [6]. In addition, 
the gravimeters used on moving objects are relative, 
so it is also necessary to know the GA values at the 
reference point in order to determine the GA. These 
allowances can be calculated by known relationships 
and taken into account in the gravimeter measure-
ments as appropriate. 

Note that damped gravimeters are primarily used 
in marine gravimetry [29, 42–45, 58, 61]. They are 
distinctive in that their sensitive element is an elastic 
pendulum suspended in a damping liquid. This helps 
to additionally dampen the high-frequency vertical 
accelerations of the vehicle, but makes the measure-
ment formation process more specific. Within the 
framework of the Kalman approach, the above fea-
tures can be taken into account by representing the 
gravimeter readings y in the following form: 

 7 7
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x x g h g
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7 ,gy x v     (7) 

where x7 is the gravity increments relative to the ref-
erence point, Tg is the time constant of the gravimeter, 
vg is the instrumental white-noise error of gravimeter 
with intensity r2, Δg is the sum of accelerations 
caused by the Eotvos and Harrison effects, the orbital 
effect, and the normal gravity variations along the tra-
jectory [6, 58, 61].  

When synthesizing the algorithms within the 
framework of the Wiener approach, the specificity of 
the damped gravimeter is taken into account by apply-
ing a special recovery procedure consisting in numer-
ical differentiation of the gravimeter readings [6, 58, 
61]. As a result, after compensating for the listed al-

lowances, a measurement model in the form of (1) 
can be used. 

3. GA ESTIMATION: PROBLEM 
STATEMENT AND SOLUTION 

ALGORITHMS 

Let us formulate two statements of the GA estima-
tion problem—Wiener and Kalman ones—and briefly 
discuss the filtering and smoothing algorithms that 
follow from them. 

4.1 Kalman Problem Statement.  
Kalman Filter and Kalman Smoother 

The Kalman problem statement consists in the 
state vector estimation: 
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according to measurements (7). 

In (8), , 1.7ix i   correspond to models (2), (4), (6), 
and g  in Eq. (6) is replaced with g g w    , 
where g   is the calculated values of allowances, in-
cluding the allowances for the Eotvos and Harrison 
effects, the orbital effect, as well as the variations of 
normal gravity values along the trajectory, and w is 
the error in their calculation. The main contribution in 
this error is made by the error in calculating the al-
lowance for Eotvos effect in accordance with the data 
from satellite navigation systems (GNSS). For the 
sake of simplification, we will further assume that wΔ 
is white noise. 

For the formulated problem statement, an equation 
for the KF can be obtained easily, using standard ex-
pressions [15–19]: 

 ˆ ˆ( ) ( )x F K t H x K t y B g      ,  (9) 

in which the matrix determining the gain factor 
2( ) ( ) TK t r P t H , the matrices of dynamics F, control 

В, observation H, and measurement noise intensity r2 
correspond to the set of equations (8) and the model 
of measurements (7), while the estimation error co-
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variance matrix P(t) is found by solving the Riccati 
differential equation 

2 .T T TP FP P F GQG r P H HP     (10) 

The matrix of generating noises G and the matrix 
of their intensities Q, included in this equation also 
correspond to the set of equations (8). 

Note that even with unchanged values of the ma-
trices included in the Riccati equation, the matrix K(t) 
will not be constant, which determines the non-
stationary form of the KF even when estimating sta-
tionary processes. At the same time, in the steady-
state mode, the KF is a stationary filter defined by the 
equation 

 ˆ ˆx F K H x K y B g       , (11) 

where 2 TK r P H
   is a constant matrix defining 

the gain factor and calculated using matrix P  defin-
ing the filtering error in the steady-state mode, satisfy-
ing the algebraic Riccati equation: 

2 0T T TFP P F GQG r P H HP
       .    (12) 

To construct a Kalman smoother (KS), a well-
known procedure that processes in reverse time the 
estimates obtained using the KF for all components of 
the state vector (Rauch-Tung-Striebel smoother) [25–
28] can be applied. 

Using know relationships, we can obtain a stochas-
tically equivalent discrete statement of the state vector 
estimation problem (8) based on measurements (7); 
after that, recursive relationships of the KF and re-
spective recursive relationships of the KS are imple-
mented for estimates calculation. 

It is easy to see that the solution of the problem 
within the framework of the Kalman approach with-
out accounting for the specifics of the damped gra-
vimeter can be easily obtained if we take into account 
that in this case the filtering problem is solved for the 

reduced state vector , 1.6ix i   from (8), according to 

measurements (1), where 1 2ag x x    and 6h x . 
Here, the white-noise error of the gravimeter, which 
does not significantly affect the result, can be added 
directly to measurements (1). 

Wiener Problem Statement.  
Wiener Filter and Wiener Smoother 

When solving the problem within the Wiener for-
mulation, we will assume that the gravimeter meas-
urements are described by model (1) in which the sig-
nal (GA) and interference (vertical accelerations) are 

specified by spectral densities (3) and (5), respective-
ly. It is required to obtain a GA estimate, using meas-
urements (1) and information about the spectral densi-
ty (3), (5). As a result, separation and factorization 
procedures make it possible to find the corresponding 
TF for the WF and Wiener smoother (WS) [12, 13]. 
In this case, the smoother is implemented by forward-
time processing of the measurements and subsequent 
processing of the obtained estimates in reverse time. 

For sufficiently complex models (3), (5), the pro-
cess of TF derivation is not trivial; in practice, the 
MLA of spectral densities proposed in the works by 
I.B. Chelpanov and L.P. Nesenyuk [12, 13] and the 
time-frequency approach developed on its basis for 
the construction of filtering and smoothing algorithms 
has been widely used [52, 62]. The idea of this meth-
od consists in combined application of the Kalman 
and Wiener approaches, including MLA. 

According to the MLA, when solving the problem 
under consideration, the spectral densities of GA and 
those of vertical accelerations are approximated as 
follows: 
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where 2 4
ε , ωсr  are the values of the spectral density and 

the frequency of the intersection point of the approx-
imated spectral densities of the signal and interference 
(Fig. 1). In this case, the parameters of the TF that 
determines the corresponding WF for the useful sig-
nal (13) estimation against the background of interfer-
ence (14) depend on the intersection point of their 
spectral densities. 

Applying the models (13), (14) arising from the 
MLA, it can be shown [62] that the TF for the WF in 
the GA filtering problem has the form 
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where α 2 2 2 2.613B    ;ω 2с cf   corre-
sponds to the signal and interference intersection 
point (Fig. 1). 

The TF corresponding to the solution of the GA 
estimation problem in the smoothing mode, i.e., ob-
taining a smoothed estimate has the form: 
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Fig. 1. Square roots of spectral densities of GA and vertical accelerations (solid lines), and their approximations (dotted lines). 

 

To calculate the desired smoothed estimate, it is 
sufficient to process the measurements of specific 
force (1) in forward time and the resulting estimates 
in reverse time, using a filter with TF corresponding 
to the Butterworth filter of the 4th order with a cutoff 
frequencyωс : 
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The fact that the resulting TF corresponds to (16) 
after such processing can be easily verified by multi-
plying the TF (17) by a complex conjugate function 
[31]. 

Note that the TF for the optimal filter (15) and the 
TF (17) for the smoother are different. Curiously, the 
filter with TF (17) does not provide an optimal solu-
tion to the filtering problem when processing the 
measurements in forward time, while the filter with 
TF (15) does not provide an optimal solution to the 
GA smoothing problem for models (13), (14) when 
processing the implementation in forward time and 
the obtained estimates in reverse time. Without dwell-
ing on the details of relationship and differences of 
the TF used in filtering and smoothing within the 
Wiener approach, we should only mention that it has 
been  considered in [19, 26]. 

One should bear in mind that the WF and WS ob-
tained using MLA will be suboptimal with respect to 
models (3), (5) and their corresponding KF and KS 

when estimating the state vector (8) by measurements 
(7) in steady-state mode. This is due to the fact that 
they were constructed using the approximation of sig-
nal and interference spectral densities, the presence of 
gravimeter errors and errors in calculating the correc-
tions w  was neglected, and the specific procedure of 
signal recovery was not taken into account. 

It should be noted that within the Wiener ap-
proach, the calculated values of the root-mean-square 
error (RMSE) of the GA estimation can be obtained 
based on the condition of the error variance finiteness, 
as well as using the time-frequency approach dis-
cussed below [62]. For the WF (15) constructed for 
simplified models (13), (14), standard deviation can 
be calculated as follows [62]: 

 
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It follows from the presented relationships that the 
standard deviation of the GA smoothing is almost 7 
times less than that of filtering. 

Note 1. It should be noted that the above problem 
statements for the GA estimation do not provide for 
availability and some consideration of high-precision 
measurements of the altitude and/or vertical velocity 
of the moving object, as is done in airborne gravime-
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try. The possibility to consider the problem in this 
way when measuring the GA from moving marine 
vehicles is based on the fact that the latter have a low-
er speed compared to aircraft, and as a result, a differ-
ent frequency composition of the useful signal and 
interference. This creates prerequisites for achieving 
acceptable accuracy of the GA estimation in sea con-
ditions without involving any additional measure-
ments. This can be done by filtering (smoothing) to 
suppress the interference, while the useful signal dis-
tortion will be minimal. On aircraft, the spectra of 
useful signal and vertical accelerations significantly 
overlap due to its high speed, and the attempts to 
achieve the required accuracy of the GA estimation at 
the background of this interference fail. For this rea-
son, additional high-precision measurements of the 
vehicle’s vertical displacements, obtained from GNSS 
have to be used. As a result, the problem is solved in 
the formulation that is invariant with respect to the 
vertical acceleration, which is achieved by forming 
the differential measurements of the gravimeter and 
GNSS. Essentially, on the aircraft the same useful 
signal (GA) is estimated against the background of 
other interference, i.e., the GNSS errors.    

At the same time, it is clear that the estimation 
problem can also be generalized with respect to a ma-
rine object in case the high-precision measurements 
from GNSS are involved. For this purpose, in the 
Kalman formulation, appropriate additional meas-
urements should be added in (7). Some results of 
studies on the effectiveness of high-precision GNSS 
measurements use in marine gravimetric surveys are 
presented in [63, 64]. Since in this case we are talking 
about the study of systems with many inputs, i.e., gra-
vimeter and GNSS measurements, preference should 
be given to the Kalman approach, since it is suits bet-
ter for processing such measurements. 

Note 2. The cases considered above relate to scalar 
gravimetry, i.e. the GA estimation, and in this paper, 
the gravimeter measurements are understood as the 
measurements of a gimbaled scalar gravimeter [6, 41–
50, 61, 63]. On the other hand, when constructing 
strapdown inertial scalar gravimeters [7, 65, 66], GA 
measurements can be obtained using the data from 
strapdown inertial systems (SINS) by converting sig-
nals from a triad of accelerometers rigidly fixed on 
the base, taking into account the object attitude angles 
calculated according to the SINS algorithms. The 
Kalman approach has become widespread in these 
systems, in particular, for correcting the SINS errors 
[7]. This scheme can also be used in vector gravime-

try, i.e., for obtaining the estimates of the full GD vec-
tor, since the SINS algorithms generate both vertical 
and horizontal components of accelerations. It is stat-
ed in [7] that a strapdown inertial gravimetric system 
and a SINS integrated with GNSS are almost identical 
in terms of equipment composition. The differences 
are only in the requirements for the accuracy of iner-
tial sensing elements, knowledge of the Earth's gravi-
ty field, and the composition and accuracy of GNSS 
receivers. In this sense, a scalar gravimeter is actually 
a vertical channel of a strapdown inertial gravimetric 
system. 

4. COMPARISON OF THE KALMAN AND 
WIENER APPROACHES 

When analyzing the effectiveness of Kalman-type 
filters, the emphasis is usually made on the values of 
the RMSE and the transition time, which are actually 
minimized for the selected models of the estimated 
signal and measurement errors. On the other hand, 
when analyzing the properties of stationary filters 
represented by TF, in addition to the RMSE, the type 
of frequency response corresponding to them and the 
parameters calculated using it, such as cutoff fre-
quency, bandwidth and resolution, are usually dis-
cussed. Since the KF is a stationary filter in steady-
state mode, it is advisable to form and calculate these 
parameters for the KF, and to use them when consid-
ering the properties and comparing the resulting al-
gorithms. 

It is clear that in case of the same models, com-
parison of the KF in steady-state mode and the WF is 
out of question, because, as was already mentioned 
in the introduction, these filters coincide with each 
other. The specific features can only manifest them-
selves depending on whether a filter is implemented 
based on an expression using a TF, a weight function 
or frequency response, or on its representations using 
linear stationary equations. These features, in partic-
ular, may be the result of ambiguous transition from 
the representation of a dynamic system (a filter in 
this case) using a TF to its representation using the 
state space. Nevertheless, these features do not have 
any effect on the properties of stationary filters. It is 
pertinent to note here that the KF in steady-state 
mode represents a WF, and vice versa, a WF can be 
considered as a Kalman-type filter with a constant 
gain coefficient. 

As was shown above, the WF can be constructed 
using MLA. In addition, in practice, when processing 
the marine gravimetric survey results, a stationary 
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filter (SF) is often used, which is a series of the 
fourth-order Butterworth filter and an aperiodic link 
with the resulting TF [6, 58, 61]: 

 
4

4 3 2 2 2 3 4

ω ω

ω α ω 0,5α ω α ω ω

ag
y

a b

a B b B b B b b

H p

p p p p p




    

,  (18) 

 

where ω 1 / ;a aT ω 2π / ;b bT Tb = 60 s, Ta = 90 s 
are the time constants of the Butterworth filter and the 
aperiodic link, respectively [6], which are selected 
empirically based on the survey conditions. 

Thus, it is of interest to compare the characteristics 
of the KF constructed for complete models; the WF 
constructed for the models obtained using MLA; and 
the stationary filter (SF) constructed from empirical 
considerations. A brief description of the algorithms 
compared is summarized in Table 1 for convenience. 

Table 1 

Brief description of filters and smoothers  
under comparison 

Filters Smoothers 

KF: Kalman filter set for 
model (8) and measure-
ments (7) 

KS: A smoother implemented by 
processing measurements in forward 
time using the KF and the obtained 
estimates of the state vector (8) in 
reverse time according to [25]. 

WF: Wiener filter set for 
the model of useful signal 
and interference (13), 
(14) with TF (15) 

WS: Smoother with TF (16), im-
plemented by processing the meas-
urements in forward time and the 
received GA estimates in reverse 
time, using a filter with TF (17). 

SF: Stationary filter with 
TF (20) 

SS: A stationary smoother imple-
mented by processing the meas-
urements in forward time and the 
obtained GA indirect estimates in 
reverse time, using a filter with TF 
(20). 

 

Further in this section, we will study and compare 
the frequency response and the weight functions of 
the KF in steady-state mode, the WF, and the SF dis-
cussed above. 

The desired frequency response for the KF in 
steady-state mode can be obtained using a TF that 
links measurements (1) with the GA estimate in the 
KF, and has the form [19]: 

  1
( )ag

yW p D pE F K H K


    , (19) 

where K  satisfies (11), and 

 1 0 0 0 0D  , because ag Dx . The 

problem of obtaining TF (21) in an analytical form is 
reduced to the need to get an analytical solution to the 
Riccati equation (12) in order to calculate P and then 
to define K , which is generally quite difficult. How-
ever, the matrix K  determining the gain coefficient 
of the KF in steady-state mode can be obtained from 
the numerical solution of the Riccati equation (12) for 
particular values of the initial data, after which it can 
be used for constructing the desired frequency re-
sponse (21). 

In order to compare the frequency responses, the 
TF was calculated for the KF in steady–state mode 
(21) with the following values: standard deviation of 
GA variability dga = 3 mGal/km; standard deviation 

of GA ga
 
= 30 mGal; standard deviation of vertical 

accelerations 
h

   = 10 Gal; period T = 5 s; non-

uniformity μ  = 0.05 s–1; motion speed V = 10 kt; 
RMSE of gravimeter’s measurements 0.5 mGal; sam-
pling frequency 10 Hz. The corresponding frequency 
response is shown in Fig. 2. For comparison, the fre-
quency response of the WF with TF (15) obtained 
using MLA for the corresponding local approxima-
tions is also shown in the figure. 

The frequency response (Fig. 2) and weight func-
tions (Fig. 3) corresponding to the KF in steady-state 
mode with TF (21), the WF for simplified models 
with TF (15), and the SF with TF (20) were obtained 
in the MatLab software, using built-in functions. 

Analyzing the type of frequency response (Fig. 2), 
it can be noted that the KF and WF are low-pass fil-
ters, and they almost coincide in the frequency re-
sponse bandwidth. As we can remember, the band-
width (transparency) or effectively transmitted fre-
quency band is a frequency range within which the 
frequency response of the filter can be considered uni-
form and ensures signal transmission without signifi-
cant distortion. The cutoff frequency is the frequency 
for which the frequency response level is halved 
compared to the value in the bandwidth [67]. There-
fore, the frequency response at the cutoff frequency 
has a decrease to lg2≈0.707 (or approximately –3 dB) 
relative to the level in the bandwidth. The cutoff fre-
quency serves as an empirical boundary of the filter 
bandwidth and also characterizes the spatial resolu-
tion of the marine gravimetric survey as discussed 
below. Note that the cutoff frequency for the WF (15) 
depends only on ωс = 2π cf , i.e., the frequency of the 
intersection point of the spectral densities of the signal 
and interference, and for the KF it is determined by all 
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the parameters of the models used. The differences in 
frequency responses of the KF and WF in the sup-

pression band (Fig. 2) are caused by the differences in 
spectral densities of interference.  

 
Fig. 2. Amplitude-frequency response of the KF, WF and SF. 

 
Fig. 3. Weight functions of the KF, WF, and SF. 

Thus, as expected, the considered KF and WF 
have similar frequency responses and weight func-
tions (Fig. 3). However, the weight function of the KF 
has larger values at zero time, which corresponds to 
frequency response increase in the frequency range 
above 0.2 Hz. These functions are also similar in 
many ways to the frequency response and weight 
functions of the SF with TF of type (20), used in prac-
tice. Nevertheless, in the case of SF, the choice of a 
particular type of frequency response and/or weight 
function usually depends on empirical considerations 
about the nature of the estimate obtained, while in the 

case of the KF and WF, the choice of the filter weight 
function depends on the parameters set for the sto-
chastic models of the signal and interference. 

When estimating the GA, the characteristic of spa-
tial resolution is also taken into consideration along 
with the RMSE. The term "resolution" is used in vari-
ous fields as a characteristic reflecting the possibility 
to distinguish fine details of useful signal in the data 
obtained after processing with a certain algorithm. In 
gravimetry, the resolution is usually defined as a half 
of the GA minimum wavelength ρ that can be high-
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lighted on a map or profile [68–70]. When processing 
the data from marine or airborne gravimetric survey, 
the value of ρ depends on the cutoff frequency of the 
filter used and on the vehicle’s speed [70]: 

 ρ
2 с

V

f
 ,    (20) 

where ρ is half of the minimum wavelength dis-
tinguished in the GA (m); V is the vehicle’s speed 

(m/s); fс is the cutoff frequency of the filter used for 
the data processing (Hz). The smaller the minimum 
wavelength ρ, the higher the spatial resolution. As 
was mentioned earlier, the cutoff frequency for the 
KF and WF under study is determined by the stochas-
tic models of GA and vertical accelerations.  

 
Fig. 4. Graphs of square roots of the GA spectral densities and vertical accelerations. 

It follows from Fig. 4 that with an increase in the 
GA variability (gradient) under the same survey con-
ditions (i.e., with the same vertical accelerations), on 
the one hand, the RMSE of the GA estimation in-
creases, and on the other hand, the spatial resolution 
becomes higher. This seemingly contradictory state-
ment is based on the fact that with increasing variabil-
ity of the GA, the level of its high-frequency compo-
nents that can be better distinguished against the 
background of the same vertical accelerations in-
creases, too. In this case, the accuracy of the GA es-
timation decreases. At the same time, with constant 
variability and increasing level of vertical accelera-
tions, the RMSE of the GA estimation will also in-
crease, while the spatial resolution will degrade. Thus, 
it can be stated that the spatial resolution depends on 
the survey conditions described by the corresponding 
models of GA and vertical accelerations. 

It is certainly an interesting question: what are the 
models presented in the state space for the useful sig-
nal and interference? In our case, these are the models 
for the GA and vertical motion, that have formed the 
TF corresponding to one or another SF. Generally 
speaking, this question is difficult to answer. It should 
be noted that it is quite easy to construct a model with 
a constant gain coefficient in the state space for a giv-

en TF defining one or another SF, and, as is known, 
this model is not the only one. However, which mod-
els for a useful signal have resulted in such a TF is 
still an open question. It turns out that the answer to 
this question can be obtained for simplified models 
(13), (14) within the framework of the time-frequency 
approach. Let us explain how to do this based on the 
works [12, 13, 52, 62]. To this end, we introduce a 
forming filter (FF) for the simplified GA model in the 
form [62]: 

1 2

2

1

,

,

,a

g g

g w

g g






    (21) 

where w  is a generating white noise with intensity 
2 4
ε ωсr . Strictly speaking, it is impossible to directly 

introduce a model in the form of the FF for the inter-
ference with spectral density (14), because according 
to the classical theory, white noise is not a differentia-
ble process. Nevertheless, the problem statement un-
der consideration can be formulated using the concept 
of a conditional spectral density [46]. By integrating 
the measurements twice, we reduce this problem to an 
equivalent (from the point of view of the resulting 
solution) problem statement for estimating the state 
vector described as 

COMPARISON OF WIENER AND KALMAN APPROACHES 21

GYROSCOPY AND NAVIGATION Vol. 15 №1 2024



1 2

2 1

1 2

2

,

,

,

,

x x

x g

g g

g w











   (22) 

based on measurements 

1y x v  ,   (23) 

where y  is the second integral from measurements 
(1), v  is the white noise of measurements with inten-
sity 2 4

ε /ω сr . Formally speaking, these are the meas-
urements of altitude. However, it is shown in [62] 
that, in terms of obtaining the TF, estimation of GA 

1ag g  described by the FF (22) according to meas-
urements (23) is equivalent to estimation of GA with 
spectral density (13) against the background of inter-
ference with spectral density (14) according to meas-
urements (1), where 1 2ag x x   . Using these re-
sults and the relationship (21), it is not difficult to 
show that the TF of such KF in the steady-state mode 
coincides with (15). In addition, it can be shown that 
the RMSE of estimation in the steady-state mode will 
coincide with (18). 

Taking into account the presented material, we can 
give the following explanation of the term “time-
frequency approach”. When obtaining a filter in 
steady-state mode in the form of TF, the Wiener (fre-
quency-based) approach is applied, which is based on 
the use of spectral densities. On the other hand, to en-
sure the filter optimality in the transient mode, a mod-
el in the form of differential equations is used, which 
makes it possible to apply the Kalman approach. 

Thus, for the reduced models (13), (14), a KF can 
be implemented, which in steady-state mode coin-
cides with the stationary WF (15) for the same mod-
els. It is important to emphasize that this filter is sta-
tionary only in steady-state mode, and during the tran-
sient process its gain coefficient changes. It has an 
important advantage over the WF, since it is the opti-
mal KF for the models (13), (14) and provides opti-
mal estimates not only in steady-state mode, but also 
in transient mode, in contrast to the WF specified by 
TF (15). Due to this, the transient process time reduc-
es when such a filter is used. 

It is important to mention that in [27] which is also 
devoted to the a smoother construction, the problem is 
solved within the Kalman approach for models simi-
lar to (24) and (25); the difference is that the GA is 
described by the third integral of white noise. At the 

same time, the emphasis is made on constructing a 
suboptimal smoother. In order to create an algorithm 
with low computational load, the authors of [27] ne-
glect the generating noise. The relationships between 
the Kalman and Wiener algorithms are not addressed 
in this work. Therefore, it can be stated that in con-
trast to [27], when implementing the smoothing algo-
rithm obtained within the time-frequency approach, 
the scalar version of the GA estimates is processed in 
reverse time, which also reduces the amount of com-
putation when constructing the filter. 

5. COMPARISON OF THE KALMAN AND 
WIENER APPROACHES BASED ON 

THE RESULTS OF SIMULATION AND 
REAL DATA PROCESSING 

To compare the KF and WF, simulation was car-
ried out under the following conditions: standard de-
viation of vertical accelerations within the range of 2–
20 Gal; standard deviation of the GA variability with-
in the range of 1–3 mGalл/km; vertical accelerations 
period T = 5 s and non-uniformity μ  = 0.05 s–1 , typ-
ical of a marine vehicle; speed V = 10 kt; white-noise 
RMSE of gravimeter σg  = 0.1 mGal; RMSE of cor-

rections calculation σw = 0.5 mGal; sampling fre-
quency 10 Hz.  

The results described in this section were obtained 
taking into account the above-mentioned features of 
the damped gravimeter and correction input. 

Figure 5 shows typical curves of the true value and 
estimates of the GA, obtained with the KF, WF and 
SF under the worst (adopted for simulation) survey 
conditions in terms of the estimation accuracy: stand-
ard deviation of GA variability 3 mGal/km, standard 
de4viation of vertical accelerations 20 Gal, which cor-
responds to the maximum wave height of 1 m. Figure 
6 shows the corresponding realizations of GA filtering 
errors for different filters, and the real RMSE calcu-
lated as explained below. 

It follows from the graphs in Fig. 5 that the esti-
mates obtained with the KF and WF contain high-
frequency components. At the same time, it can be 
seen that the SF estimates have a greater delay than 
the KF and WF estimates for which the delay is insig-
nificant in this case, and this ultimately causes a larger 
RMSE of GA estimation with the SF, as shown in 
Fig. 6. 
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Fig. 5. GA estimates obtained with the KF, WF and SF 

 
Fig. 6. GA filtering errors for the KF, WF and SF. 

 

Figure 7 shows typical curves of the GA true value 
and estimates obtained with KS, WS and SS for the 
same realization of measurements as in Figs. 5, 6. It 
can be seen that the smoothing mode prevents the 
phase delay for all filters. Figure 8 presents the errors 
and the RMSE of the GA estimation for KS, WS and 
SS. In the simulation, the KS provides optimal esti-
mation accuracy, while the WS constructed using 
MLA, and the SS are slightly inferior to it in accura-
cy. Based on this, the following curious fact can be 
noted: the smoothing mode reduces the effect of accu-
racy drop when suboptimal filters are used. 

At the same time, it should be remembered that the 
above RMSE for various filters are close to each other 
only in case of steady-state mode. During the transient 
process, the errors of the WF and SF are considerably 
higher than the RMSE of the KF.  

Real (r) and calculated (c) RMSE of GA estima-
tion in the steady-state mode were obtained for differ-

ent survey conditions as summarized in Tables 2, 3. 
The real and calculated values of the RMSE coincide 
for the KF and KS set for the original complete mod-
els, since GA and vertical accelerations were simulat-
ed according to (2), (4). For the WF and WS, the cal-
culated values of RMSE were calculated according to 
(18), (19), and the real values were calculated accord-
ing to the statistical test (Monte Carlo) method by 
modeling a set of realizations and subsequent averag-
ing [71]. For the SF and SS, only real RMSE calculat-
ed in the same way are given, since this filter does not 
imply a calculated accuracy characteristic. 

It follows from Table 2 that the real RMSE of the 
WF and SF are much (up to two times) higher than 
the real RMSE of the KF. In this situation, the SF 
shows the greatest RMSE, although its estimates are 
visually close to the GA. This is caused by a signifi-
cant phase delay of the SF, which can be clearly seen 
in Fig. 6. The calculated RMSE of the GA estimate 
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obtained with the WF is 10–20% lower than the 
RMSE error of the KF; this means that the calculated 
values of the RMSE are more optimistic for all the 
conditions considered. 

According to Table 3, the real RMSE of the WS 
exceeds that of the KS by no more than 8%, and the 
RMSE of the SS—by no more than 10%. It can be 

noted that there are much less differences between the 
RMSE of smoothers compared to usual filters, since 
there is no phase delay when smoothing algorithms 
are used. In this case, the calculated RMSE of the GA 
estimation with the WS is 10–20% lower than with 
the KS. 

 
Fig. 7. GA estimates obtained with KS. WS and SS. 

 
Fig. 8. GA smoothing errors for KS, WS and SS. 

Table 2 
RMSE of GA estimation with KF, WF and SF in steady-state mode 

h
   

1 mGal/km 2 mGal/km 3 mGal/km 

KF 
WF 

(c) 

WF

(r) 

SF 

(r) 
KF 

WF 

(c) 

WF

(r) 

SF 

(r) 
KF 

WF 

(c) 

WF

(r) 

SF 

(r) 

2 Gal 0.22 0.19 0.40 0.51 0.41 0.36 0.41 0.65 0.74 0.69 0.83 0.96 

5 Gal 0.31 0.27 0.48 0.65 0.57 0.51 0.82 1.12 1.05 0.98 1.15 1.51 

10 Gal 0.42 0.35 0.52 0.73 0.74 0.66 1.14 1.51 1.36 1.27 1.56 1.90 

20 Gal 0.52 0.45 0.60 0.85 0.96 0.86 1.43 1.85 1.54 1.66 1.70 2.25 

Note: c = calculated values, r = real values. 
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Table 3 
RMSE of GA estimation with KS, WS and SS in steady-state mode 

h
   

1 mGal/km 2 mGal/km 3 mGal/km 

KS 
WS 

(c) 

WS

(r) 

SS 

(r) 
KS 

WS 

(c) 

WS

(r) 

SS 

(r) 
KS 

WS 

(c) 

WS

(r) 

SS 

(r) 

2 Gal 0.05 0.03 0.05 0.06 0.07 0.05 0.07 0.08 0.13 0.10 0.14 0.15 

5 Gal 0.06 0.04 0.06 0.06 0.10 0.07 0.10 0.11 0.18 0.14 0.19 0.22 

10 Gal 0.07 0.05 0.07 0.08 0.12 0.10 0.13 0.17 0.23 0.19 0.24 0.28 

20 Gal 0.09 0.07 0.09 0.10 0.16 0.13 0.17 0.20 0.30 0.24 0.32 0.34 

 

In absolute figures, the difference between the real 
values of the WF and KF RMSE does not exceed 0.15 
mGal, and the difference between the real values of 
WS and KS RMSE does not exceed 0.05 mGal. Thus, 
the differences in models when using MLA to con-
struct the WF slightly affect the real accuracy of the 
GA estimation, but negatively affect the consistency 
of the WF, which is understood as the consistency 
between the calculated and real accuracy characteris-
tics of the filter [71]. In this sense, the KF is con-
sistent because it is set for well-known models. 

It can be noted that the RMSE of estimates ob-
tained with the SS, especially for small values of 
standard deviation of the GA variability and vertical 
accelerations, also differ little from the RMSE of the 
optimal KS. However, the differences between the SF 
and KF are significant in the filtering mode. These 
results are further confirmed by real data processing. 
At the same time, it should be kept in mind that 
closeness of the RMSE noted above for various filters 
can be observed only for steady-state mode. During 
the transient process, the error of the WF and SF is 
noticeably higher than the RMSE of the KF. 

It should also be emphasized that the KF and re-
spective smoother will be optimal only for the speci-
fied models (2), (4) (which are assumed to be true in 
the simulation) and specific values of their parameters 
(which are known in the simulation conditions). In 
practice, when constructing the optimal filters within 
both the Wiener and Kalman approaches, there are 
some challenges related to the sensitivity to the mod-
els used and the values of their parameters if they dif-
fer from the real ones. In this case, it is necessary to 
synthesize adaptive filters, i.e. to estimate the GA and 
the model parameters simultaneously. To overcome 
these challenges, the methods developed within the 
Kalman approach can be effectively used, which is 
another important advantage [63, 72–746]. 

Next, we will compare the results obtained using 
the KF, WF and SF in the real data processing. For 
such a comparison, four pairs of return tacks (trav-
ersed in two mutually opposite directions) with differ-
ent variability of GA and standard deviations of verti-
cal accelerations were chosen in different areas of the 
World Ocean. The GA measurements were taken 
with a gyrostabilized gravimeter Chekan-AM. Two 
pairs of the chosen tacks with a small value of the GA 
variability ( dga  = 0.5 mGal/km) were passed under 

strong (
h

 = 40 Gal) (tacks 1, 2) and low (
h

 = 10 

Gal) (tacks 3, 4) waves. The other four tacks were 
selected in two areas with high GA variability ( dga = 

3 mGal/km). Of these, the pair of tacks 5, 6 were sur-
veyed with low waves (

h
 = 10 Gal), and the tacks 7, 

8—with strong ones (
h

 = 40 Gal). Figure 9 shows an 

example of GA estimates obtained with the KF, WF 
and SF on tack 8, where the greatest difference be-
tween these filters can be observed. There is also the 
reference GA value in Fig. 9, obtained by averaging 
the estimates of the KS for all tacks, which demon-
strates the phase delay of the SF. 

Figure 10 shows the errors in the estimation with 
the KF, WF and SF. 

Figure 11 depicts the GA estimates obtained with 
KS, WS and SS for the same tack, and the same refer-
ence is given for comparison. Figure 12 shows the 
estimation errors of smoothers.  

To compare the accuracy of GA estimation with 
the KF and WF for each pair of return tacks 1–2, 3–4, 
5–6, and 7–8, the real (r) RMSE were calculated ac-
cording to the difference in the GA estimates between 
these filters in steady-state mode. These RMSE are 
given in Table 4 along with the calculated (c) values 
of the RMSE. The latter were found for the KF by 
means of the covariance matrix calculated in the KF, 
and for the WF they were calculated by (18), (19). 
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Fig. 9. GA estimates obtained with the KF, WF and SF. 

 
Fig. 10. GA filtering errors for the KF, WF and SF. 

 
Fig. 11. GA estimates obtained with KS, WS and SS. 
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Fig. 12. GA smoothing errors for KS, WS and SS. 

Table 4 
RMSE of GA estimation with KF, WF and SF 

Tacks 

Smoothing Filtering 

KF 

(c) 

KF 

(r) 

WF 

(c) 

WF 

(r) 

SF 

(r) 

KF 

(c) 

KF 

(r) 

WF 

(c) 

WF 

(r) 

SF 

(r) 

1-2 0.04 0.02 0.02 0.02 0.03 0.20 0.14 0.16 0.15 0.34 

3-4 0.08 0.07 0.06 0.10 0.28 0.51 0.36 0.43 0.53 0.68 

5-6 0.12 0.34 0.09 0.41 0.34 0.78 0.73 0.63 0.90 1.33 

7-8 0.26 0.80 0.20 0.81 0.81 1.44 1.56 1.20 1.74 3.89 

 

It follows from the above results that the KF, WF 
and SF have close real RMSE of estimation, which 
correlates well with the predictive simulation results. 
The calculated and real RMSE of GA estimation with 
the KF and WF are close only for the tacks with low 
GA variability, which indicates the consistency of 
these filters in the given conditions. For the tacks with 
high GA variability, the difference between the calcu-
lated and real RMSE is significant (up to 0.6 mGal), 
which is especially apparent on tacks 7–8 with high 
vertical accelerations. This fact suggests that it is ad-
visable to refine the model of measurement errors in 
the given conditions. 

CONCLUSIONS 
 

The interrelation, differences and features of algo-
rithms for processing the results of marine scalar 
gravimetric surveys (filters), synthesized within the 
Kalman and Wiener approaches have been discussed. 
Their advantages and disadvantages in solving the 
filtering and smoothing problems have been studied, 
and the features of the GA estimation problems 

solved on a marine moving vehicle have been consid-
ered in comparison with similar problems for aircraft.  

The results obtained with different filters in predic-
tive simulation and real data processing have been 
presented and compared. The consistency of the Kal-
man filters in case of low values of the GA gradient 
has been confirmed. However, in some cases the con-
sistency was found to be unsatisfactory, which means 
that the models of the useful signal (GA) and interfer-
ence (vertical inertial accelerations) need to be refined 
in the given conditions.  

The differences between filters and smoothers re-
lated to the presence/absence of delay have been 
shown, and it has been noted that there is a signifi-
cant, up to 7-fold decrease in the GA estimation errors 
in the smoothing mode compared to the filtering 
mode. 

As expected, the results of the research showed 
that the main advantages of the KF compared to the 
WF and respective smoothers in determining the GA 
are shorter transients and the possibility to calculate 
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the current accuracy characteristics. Another ad-
vantage of the Kalman approach application to this 
problem is a relatively simple way of generalization if 
additional measurements are involved, which is quite 
important in the integrated processing of gravimeter 
and GNSS data [63, 64]. 

The WF built for the same models as the KF, pro-
vides the same accuracy in steady-state mode, but has 
a longer transient process and cannot generate the cur-
rent accuracy characteristic. 

It has been emphasized that, when constructing the 
optimal filters within both the Wiener and Kalman 
approaches, there are certain problems with sensitivity 
to the models of useful signal and interference, so 
there is the need for adaptive filters synthesis. To 
overcome these problems, the algorithms developed 
within the Kalman approach can be effectively used, 
since they provide for the GA estimation and model 
parameters identification simultaneously, which is 
another important advantage of this approach [63, 72, 
73]. However, these issues are beyond the scope of 
this work and should be considered in a separate 
study. Moreover, it is important to continue studying 
the use of GNSS high-precision measurements in ma-
rine gravimetric surveys with the aim to expand the 
potential conditions for these activities. 
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