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Abstract: Mass defect (unbalance) of a hemispherical resonator creates forces and moments affecting its center of mass and 
making the resonator stem oscillate. A part of oscillation energy is dissipated in vicinity of the resonator attachment, which reduces 
its Q-factor and leads to additional systematic drift. The paper considers the main factors determining the dissipative characteristics 
of the resonator-base joint such as the resonator design and dimensions, internal friction in the bonding layer, and the defects of 
this layer. It has been shown that the internal friction due to attachment is proportional to the layer thickness and inversely pro-
portional to the thickness of base, stem diameter, and Young’s modulus of the layer material. Asymmetric stem fixation in the 
hole in base, ovality of hole or of the stem, bubbles in the bonding layer result in azimuth-depending losses and additional HRG 
systematic drift. 
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1. INTRODUCTION 

Hemispherical resonator gyroscopes (HRGs) form 
a large class of modern navigation devices. They are 
applied to different technological areas; however, their 
wide distribution is limited by technical and economic 
reasons. One of them is the need to manufacture a 
quartz hemispherical resonator with high axial sym-
metry and Q-factor. Different geometrical deviations 
cause the resonator mass defect, which may largely de-
grade its performance and parameters of the whole 
HRG. Generally, geometrical shape deviations for the 
resonator with a mean radius R are arbitrarily distrib-
uted over the hemisphere surface. For the shell selected 
cross-section, its wall thickness can be described with 
Fourier series:  
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Inhomogeneous thickness of the resonator wall 
leads to mass distribution per unit angle, nonuniform in 
azimuth angle φ, following the same law: 
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where mk = ρR2hk, ρ is the density of resonator material.  

As reported in the number of publications [1–5], 
resonator mass defect creates forces and moments af-
fecting its center of mass, which are directly propor-
tional to the first, second, and third forms of this defect. 
For the hemispherical resonator operating on the lower 
bending oscillation mode, the first and third forms of 
the mass defect, proportional to m1, m3, cause the 
forces transverse to the symmetry axes, and the second 
form proportional to m2 causes the longitudinal force. 
Nonuniform mass distribution over the resonator 
height leads to force moments, which cause the reso-
nator stem to oscillate, the major part of oscillation en-
ergy being dissipated in the adhesive (or soldered) 
bonding layer, which connects the resonator stem with 
the base. If the energy dissipation in this joint is non-
uniform and is conditioned by the vector of mass center 
oscillations, the resonator Q-factor depends on the ori-
entation of the wave pattern, which provides system-
atic drift of the wave pattern at a rate [6] 
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where  is the current attitude (orientation of anti-

nodes) of the wave pattern; 1  and 2  are the maxi-
mum and minimum internal frictions in the attached 
resonator; Q1 and Q2 are the minimum and maximum 
Q-factors of the attached resonator; 0 is the attitude 
angle of the shell dissipative defect; f  is the resonator 
oscillation frequency.  

Amplitude of the drift rate of the wave pattern may 
reach several tens or even hundreds degrees per hour, 
and its stability depends on the constancy of internal 
friction (which is generally low) in the resonator-base 
joint. Any instability of dissipative processes in this 
joint results in unstable amplitude of the drift rate (3), 
which is understood as a random error by the naviga-
tion system. Actually it is the resonator mass unbalance 
and dissipation of oscillation energy near the resonator 
attachment that mainly cause HRG error.  

This paper focuses on the major factors affecting the 
dissipative characteristics of the resonator-base joint 
such as the resonator design and dimensions, internal 
friction in the bonding layer, and the defects of this 
layer. 

2. RESONATOR DESIGN AND  
DISSIPATION IN BONDING LAYER 

In mass produced HRGs described in literature, the 
hemispherical resonator is usually attached to the base 
with an adhesive or solder alloy. Different low outgas-
sing adhesives are commonly applied [7], and for sol-
dering, indium, with its good adhesion to fused quartz 
and low melting temperature (152°С). In 1990s, Delco 
Electronics applied glass frit for assembly, but later 

abandoned this technology due to its complexity and 
low reliability. Some methods for adhesive-free attach-
ing the resonator with one stem [8] or two stems [9] to 
the base have been proposed. The resonator is fixed 
with the elastic components reducing the dissipation of 
oscillation energy in the base. This attachment does re-
duce the dissipation of oscillation energy in the sup-
port; however, it degrades the dissipative stability of 
the joint. The elastic component mechanically contacts 
the quartz surface only at certain areas (contact areas). 
Under shocks, vibrations, temperature causing nonuni-
form expansion of the components and sliding, the 
contact conditions and the surface internal friction in 
the contact area vary, and so do the parameters of the 
systematic drift of the standing wave. Therefore, reso-
nator mechanical attachment methods have not found 
practical application in HRG technology despite their 
obvious advantages (no outgassing, dismountability). 
Further we mostly consider adhesive and solder bond-
ing layers.  

Analyze how the design of hemispherical resonator 
affects the energy dissipation in the bonding layer. Dif-
ferent resonator designs have been described in publi-
cations, which can be generally classified into resona-
tors with double-ended stems (used by Delco/Litton in 
1970–2000) and with single-ended inner stems applied 
in the majority of modern HRGs (produced, for exam-
ple, by Sagem). The attachment of HRG base with the 
hemispherical resonator with a single-ended inner stem 
is shown in Fig. 1а. For simplicity, only the defect of 
the first form of magnitude m1 at some distance from 
the edge corresponding to the polar angle α is demon-
strated.

 
Fig. 1. Attaching the unbalanced hemispherical resonator: а) with inner stem; b) with double-ended stem 
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Due to the resonator shell oscillations, this mass de-
fect creates the transverse force F, the force moment 
due to the resonator attachment away from its center of 
mass, approximately being M11 = F·L, and the force 
moment due to the vertical motion of the shell edge M12 
= F·R. When applied to the bonding layer, these forces 
and moments cause its deformation and dissipation of 
the oscillation energy, thus reducing the resonator Q-
factor.  

Under the transverse force F, the resonator motion 
with respect to the base along axis X, i.e., perpendicular 
to the stem, can be described with the equation  
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where M is the resonator mass; F is the transverse force 
due to the mass defects; ξ is the internal friction in the 
bonding layer; dc is the thickness of the bonding layer; 
S is the deformed area of the bonding layer; E is the 
Young’s modulus of the layer material; ω is the oscil-
lation circular frequency.   

In the steady-state mode, the stem oscillation ampli-
tude is  
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The energy of the bonding layer deformation is  
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A part of this energy ΔW, irreversibly dissipated in 
the bonding layer, is defined as the product of the ad-
hesive or solder internal friction ξ by the layer defor-
mation energy:  

ΔW = 2πξWc.                      (7) 

The additional internal friction in the oscillator is  
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where W is the resonator oscillation energy.  

According to the Rayleigh formula [6], 
2 2 2

01.52961
,

8

R h a
W

  
               (8) 

where а is the amplitude of resonator oscillations.  

Assuming α = π/2 and F ≅ m1aω2 for the first form 
of mass defect, we obtain  
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This additional internal friction forms a part of the 
total internal friction in the resonator. Obviously, if the 

resonator is balanced, i.e., m1 = 0, then 0  . In an un-

balanced resonator, const  if the force deforming 
the bonding layer is independent on the orientation of 
the wave pattern (for example, with only first or third 
mass defect forms). Then the internal friction along the 
resonator dissipative axes increases by the same value 

 . The resonator Q-factor is degraded, however, the 

difference  1 2     being a cofactor in (3), remains un-

changed, i.e., the systematic drift rate of the standing 
wave does not change. With the second form or the 
combination of the first and third mass defect forms, 
the force F becomes dependent on the orientation of 

the wave pattern, then   becomes the function of the 
circular angle φ, which changes the difference 

 1 2     and thus the systematic drift rate. 

Several useful conclusions can be made from (9). 
First, the additional internal friction due to attachment 
quadratically depends on the mass defect, so reducing 
the mass defects of the first three forms effectively im-
proves the HRG accuracy. This can be achieved by en-
hancing the resonator manufacturing accuracy and its 
further balancing.  

According to (9), additional losses in the resonator 
are proportional to the thickness of the bonding layer, 
so it should be minimal, and its material (adhesive or 
solder) should have high Young’s modulus. These 
losses are inversely proportional to the area S, so they 
can be reduced by increasing the stem diameter and 
thickness of the base.  

Note that the above relations are formally true for 
adhesive-free mechanical joints as well. The area of the 
contact areas should be used as S, and dc and E stand 
for the thickness of the deformed surface layer and its 
Young’s modulus. These parameters can be only ap-
proximately estimated, so these calculations practically 
do not make sense for mechanical joints.  

The resonator dimensions also affect the sensitivity 
to the mass defects. Economically, producing smaller 
resonators (with smaller diameters) is more profitable, 
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because it downsizes the HRG and makes it more com-
petitive. The first HRGs had ca. 60 mm resonators, and 
now the serially produced HRGs have 20-30 mm reso-
nators, and they are being further reduced. Next, we 
discuss the problems appearing with reducing the di-
ameter of the resonator with mass defect.  

Substituting (2) to (9) demonstrates that   does not 
depend on the resonator radius R. However, changing 
the resonator geometry changes its oscillation fre-
quency according to the Rayleigh’s formula [6]: 
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where Em is the Young’s modulus; υ is the Poisson’s 
ratio of the resonator material.  

In order to keep the resonance frequency at units of 
kilohertz, the developers should decrease the resonator 
wall thickness while decreasing its diameter. Accord-
ing to the analysis of the known HRG designs [10], the 
wall thickness commonly makes about 6-7% of its ra-
dius. Assuming h0 = 0.065R and substituting (2) and 

(10) to (9), we obtain 3~1/ R . It is well known that 
hemispherical resonators of mass produced HRGs are 
manufactured from fused quartz on special machine 
tools with limited accuracy [11]. If the same facilities 
are used, the amplitudes of harmonics of resonator ge-
ometrical deviations from the axisymmetrical shape hk 
will be nearly the same independent from the resonator 
diameter. Then, the influence of the mass defect on sys-
tematic drift rate will grow fast as the resonator diam-
eter decreases. 

The profile of the resonator wall also matters. The 
resonator can be considered an absolutely rigid body if 
its natural frequencies exceed the frequency of the op-
erating mode. The resonator natural frequency range 
depends not only on the shell diameter and thickness, 
but also on the stem diameter, radius of the shell-stem 
joint, and distance between the centers of the inner and 
outer hemispheres. If the frequency of shell oscillations 
about the stem is lower than the working frequency, the 
pendular oscillations of the shell are propagated to the 
support via the intermediate oscillator, and under cer-
tain conditions the force transmitted to the support is 
greatly reduced. Thus, if the frequency of shell oscilla-
tions is N > 2 times and more higher than natural fre-
quency of the intermediate oscillator, the oscillation 
force transmitted to the support is reduced by N2 times 
[12]. In other words, the intermediate oscillator func-
tions as a vibration isolation between the mass-unbal-

anced hemispherical shell and the device base. This ap-
proach is applied, for example, in a Sagem resonator 
with a variable wall profile [13]. 

The force moments are also applied to the resona-
tor-base joint and compensated by the moment FkH/2 
(Fig. 2), determined by the mass defect parameters, 
base thickness, and distance L. The compensating mo-
ment can be significantly reduced by reducing the mo-
ment M11 by moving the resonator attachment point 
closer to its center of mass (then L → 0). The moment 
M12 can provide a significant influence, because usu-
ally H < R and, with small base thickness, Fk > F.  

Next, we consider the dissipation processes in the 
joints when attaching a double-stem resonator  
(Fig. 1b). 

  
Fig. 2. Compensating the force moments at the resonator attach-

ment point. 
 

When attaching this resonator, the deforming force 
is approximately uniformly distributed between two 
supports. Then, with account with the quadratic de-
pendence (6), the total energy of bonding layer defor-
mation due to mass defects is reduced about two times, 
and the total energy losses in the joint will reduce, ac-
cordingly. Note that with this attachment there are no 
force moments in the supports, since they are compen-
sated by relatively small transverse forces in the two 
supports. Thus, we can ignore the force moments due 
to mass defects which are present on the shell at differ-
ent angles α, and balancing the resonator is reduced to 
removing the unbalanced mass only from its edge. The 
resonator balancing procedure is significantly simpli-
fied, and, despite the technological complexity of pro-
ducing resonators with a double-ended stem, this de-
sign provides higher accuracy. The fact is that the re-
sidual mass unbalance of this resonator leads to a rela-
tively small dissipation of oscillation energy in the sup-
ports, and hence to a lower Q-factor difference and am-
plitude of systematic drift rate of the wave pattern as 
compared to a resonator with one inner stem. 
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3. INFLUENCE OF THE BONDING LAYER 
INHOMOGENEITY ON DISSIPATION 

Asymmetric attachment. Assume that the base 
hole with diameter D and the resonator stem are per-
fectly round, but the stem is attached asymmetrically, 
i.e., the bonding layer has different thickness on the op-
posite sides of the stem: (dc + δ) on one side, and (dc – 
δ) on the opposite side. When a variable force F is ap-
plied to the resonator stem, the bonding layer on both 
sides will be deformed by the same value Δh, but the 
deformation will be different: the layer will be com-
pressed on one side and expand on the other side. Then 
the unequal elastic forces appear on the opposite sides 
of the stem due to different thickness of the bonding 
layer. 

Then, 
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The deformation energies of the bonding layer on 
the opposite sides of the stem will be different, respec-
tively. 

The deformation energy of the bonding layer is 
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The last cofactor in (12) considers the bonding 
asymmetry. For example, with asymmetry /dc = 10% 
the loss inhomogeneity of about 1% occurs in the at-
tachment, which changes the systematic drift rate (3). 

Ovality of the hole in the base. Assume that the 
resonator stem is perfectly round, symmetrically glued 
into the base, but the hole is oval, which changes the 
gap from dc (in the direction of axis X, for example) to 
(dc + ) in the direction of axis Y. With the same force 
F created by the mass unbalance of the resonator, the 
deformation energies of the bonding layer (and, respec-
tively, the loss of oscillation energy along these direc-
tions) will be different. Wherein 
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For example, if the Y axis gap is 10% larger than the 
X axis gap, then the energy dissipation in the Y direc-
tion is 10% more than the loss in the X direction. This 
difference in losses also results in additional systematic 
drift. The example above shows that the ovality of the 
hole has a much greater effect on the HRG systematic 
drift than the asymmetrical resonator attachment. 

Air bubbles in the bonding layer. When attaching 
the resonator to the base, air bubbles may appear in the 
bonding layer, which is especially typical for adhesive 
joints. The bubbles also affect the energy dissipation in 
the joint, because the layer material deformation area S 
locally changes. Let us consider the ideal case, where 
the stem and the hole in the base are perfectly round, 
the stem is located symmetrically in the hole, but there 
is an air bubble of s area in the bonding layer. Accord-
ing to (6), as the area S decreases, the deformation en-
ergy of the bonding layer increases. Using formula (6), 
it can be shown that the deformation energy will in-
crease S/(S–s) times, also affecting the systematic drift 
rate. 

4. INTERNAL FRICTION  
IN THE BONDING LAYER 

Formulas (4, 5, 9) include the internal friction ξ, 
which characterizes the part of the deformation energy 
of the bonding layer that irreversibly transforms into 
heat. Internal friction is determined by the structure of 
the material, the presence of impurities, various de-
fects, etc. The existing theories of internal friction in 
adhesives and metals help generally understand the 
reasons for their inelasticity, but the theoretical calcu-
lation of ξ is difficult even for materials with a simple 
composition and a known structure. Therefore, the 
losses in the bonding layer should be calculated using 
the experimental data. Internal friction in metals and 
alloys has been studied for several decades, so the data 
required for the calculations can be taken from the lit-
erature [14]. As to the internal friction in adhesives, 
there is very little information, and, given the wide 
range of modern adhesive systems, it has to be obtained 
experimentally. 

The mechanical properties of adhesives over a ra-
ther wide temperature range are determined with dy-
namic thermo-mechanical analysis (DTMA): an adhe-
sive sample is made as a thin plate, mounted on sup-
ports, and a dynamic load is applied to it using a special 
probe. The sample performs bending oscillations with 
a given frequency and amplitude selected so that the 
sample deformation is within a few μm. The sample 
bending deflection is measured while applying varia-
ble force to it. Due to internal friction, the reaction of 
the sample is delayed, that is a phase shift δ occurs be-
tween the applied force and the deformation. The phase 
shift, the load and deformation amplitudes are used to 
determine the viscoelastic properties of materials – 
Young's modulus and mechanical loss angle tangent, 
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which is close to ξ. The measurements are usually car-
ried out in a thermal chamber in the temperature range 
from –50 to +250°С. 

As an example, Figure 3 presents the experimental 
data obtained by this method using the thermomechan-
ical analyzer TMA Q400 for two different types of ad-
hesives. The curve of temperature dependence of inter-
nal friction in K-400 adhesive (Fig. 3, a) clearly shows 

a wide peak of internal friction with a maximum of 
 0.38 at ~30°C, with the area of intensive internal 
friction covering the temperature range from –40 to 
+100°С. This temperature range is the most important 
from a practical standpoint, but in this range the inter-
nal friction in joints filled with K-400 adhesive leads to 
the largest energy loss in the resonator, which most sig-
nificantly affects the HRG performance.

 
а) 

 
b) 

Fig. 3. Viscoelastic properties of adhesives К-400 (a) and Resbond-940LE (b) determined by DTMA. 
 

It should also be noted that the Young's modulus of 
the cured adhesive changes greatly in this temperature 
range: it decreases from ~5000 MPa at –50°C to 
40 MPa at +150°C, which indicates significant 
changes in the adhesive structure. All these factors 
makes K-400 unsuitable for HRG assembly. 

A completely different pattern is presented in Fig. 
3, b, which shows the results of thermomechanical 
analysis of Resbond 940LE ceramic adhesive. The in-
ternal friction of this adhesive is 0.015-0.020, that is an 

order of magnitude less than in K-400, and the depend-
ence does not have sharp extremums. The Young’s 
modulus of the adhesive also decreases with increasing 
temperature, however, this decrease in the –50 to 
+150°C range does not exceed 10%, which manifests 
its much stronger and more stable structure. 

Based on the known experimental dependence of 
internal friction in adhesive ξ(T), using the above for-
mulas, the internal friction caused by attaching an un-
balanced resonator with a mass defect for a given tem-
perature can be determined. 
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CONCLUSIONS 

The mass unbalance in the resonator leads to vibra-
tion of the resonator stem and dissipation of energy in 
the resonator-base bonding layer. The losses condi-
tioned by the bonding layer are proportional to its 
thickness. For this reason, the layer should be made as 
thin as possible, for example, by using unfilled adhe-
sive or adhesive with small (several μm) filler particles. 
Energy losses can also be reduced by thickening the 
base and/or increasing the resonator stem diameter. 

When manufacturing resonators of different diameters 
using the same equipment, the shape error is approxi-
mately equal. In this case, the intensity of internal friction 
at the attachment point of unbalanced resonators is ~R–3. 

Attaching the hemispherical resonator by two stems 
significantly reduces the related dissipation, which fi-
nally improves the HRG performance. Force moments 
created by mass defects during oscillations are com-
pensated by relatively small transverse forces in the 
supports. This attachment allows removing the unbal-
anced mass only from the edge of the resonator during 
balancing and simplifies its balancing procedure. 

Asymmetrical fixation of the stem in the base hole, 
ovality of this hole or the stem, and the presence of air 
bubbles in the bonding layer result in an azimuthal de-
pendence of losses and create additional systematic 
drift of the HRG. 

Internal friction in the bonding layer material is a 
composite function of temperature, so the systematic 
drift conditioned by these losses will also be tempera-
ture dependent. 
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