Gyroscopy and Navigation

N.V. Panokin et al. Application of Sparse Representation of Complex Data in Railway Positioning and Collision Alert Systems Using Millimeter-Wave Radar

download.JPG

The paper presents the results from the experimental study of a modified artificial neural network MFNN (minimum fuel neural network). Sparse representation of complex data with overcomplete basis and L0/L1 norm optimization are used instead of the classical fast Fourier transform (FFT) algorithm. The results showed a significant enhancement in the ability of obstacle recognition and autonomous railway control systems to distinguish between close objects such as trains on adjacent tracks at marshalling yards.

Keywords: railway transport, obstacle recognition, radar, angular resolution, artificial neural network, MFNN, overcomplete basis, L0 norm, L1 norm.

About authors N.V. Panokin
Moscow Polytechnic University, Moscow, Russia
ORCID 0000-0001-8680-9510.

I. A. Kostin  
Moscow Polytechnic University, Moscow, Russia
ORCID 0000-0002-9069-9198.

A. V. Averin
Moscow Polytechnic University, Moscow, Russia

A. V. Karlovskii
Moscow Polytechnic University, Moscow, Russia
ORCID 0000-0001-7660-3375.

D. I. Orelkina
Moscow Polytechnic University, Moscow, Russia

A. Yu. Nalivaiko
Moscow Polytechnic University, Moscow, Russia
ORCID 0000-0003-2475-4811.

N.V. Panokin, I. A. Kostin, A. V. Averin, A. V. Karlovskii, D. I. Orelkina, and A. Yu. Nalivaiko. Application of Sparse Representation of Complex Data in Railway Positioning and Collision Alert Systems Using Millimeter-Wave Radar / Gyroscopy and Navigation, 2024, Vol. 15, No.1, pp. 61-68

Журнал «Гироскопия и навигация» включен в «Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора и кандидата наук»
Go to top
Go to top